三维(3D)图像(例如CT,MRI和PET)在医学成像应用中很常见,在临床诊断中很重要。语义歧义是许多医学图像标签的典型特征。这可能是由许多因素引起的,例如成像特性,病理解剖学以及二进制面具的弱表示,这给精确的3D分割带来了挑战。在2D医学图像中,使用软面膜代替图像垫形式产生的二进制掩码来表征病变可以提供丰富的语义信息,更全面地描述病变的结构特征,从而使后续诊断和分析受益。在这项工作中,我们将图像垫子介绍到3D场景中,以描述3D医学图像中的病变。 3D模态中图像垫的研究有限,并且没有与3D矩阵相关的高质量注释数据集,因此减慢了基于数据驱动的深度学习方法的发展。为了解决这个问题,我们构建了第一个3D医疗垫数据集,并通过质量控制和下游实验中的肺结节分类中令人信服地验证了数据集的有效性。然后,我们将四个选定的最新2D图像矩阵算法调整为3D场景,并进一步自定义CT图像的方法。此外,我们提出了第一个端到端的深3D垫网络,并实施了可靠的3D医疗图像垫测试基准,该基准将被发布以鼓励进一步的研究。
translated by 谷歌翻译
基于对抗性学习的现有无监督的域适应方法在多个医学成像任务中取得了良好的表现。但是,这些方法仅着眼于全局分布适应,而忽略了类别级别的分布约束,这将导致次级适应性的性能。本文基于类别级别的正则化提出了一个无监督的域适应框架,该框架从三个角度正规化了类别分布。具体而言,对于域间类别的正则化,提出了一个自适应原型比对模块,以使源和目标域中同一类别的特征原型对齐。此外,对于域内类别的正则化,我们分别针对源和目标域定制了正则化技术。在源域中,提出了原型引导的判别性损失,以通过执行阶层内紧凑性和类间的分离性来学习更多的判别特征表示,并作为对传统监督损失的补充。在目标域中,提出了增强的一致性类别的正则化损失,以迫使该模型为增强/未增强目标图像提供一致的预测,这鼓励在语义上相似的区域给予相同的标签。在两个公共底面数据集上进行的广泛实验表明,所提出的方法显着优于其他最先进的比较算法。
translated by 谷歌翻译
在这封信中提出了一种新的基于触诊的切口检测策略,潜在地用于机器人气管术。引入触觉传感器以通过轻轻接触测量特定喉部区域中的组织硬度。提出了内核融合方法以将平方指数(SE)内核与ornstein-uhlenbeck(OU)内核组合,以弄清楚现有内核功能在这种情况下的缺点是不够最佳的。此外,我们进一步规则化探索因子和贪婪因子,并且触觉传感器的移动距离和机器人基准的旋转角度在切口定位过程中被认为是采集策略中的新因素。我们进行了模拟和物理实验,以比较新提出的算法 - 重新分配采集策略与热气检测中的能量限制(RASEC),具有当前的触诊的采集策略。结果表明,具有融合内核的建议采集策略可以通过最高算法性能成功定位切口(平均精度0.932,平均召回0.973,平均F1得分0.952)。在机器人触发过程中,累积移动距离减少了50%,累积旋转角度减少了71.4%,没有牺牲在综合性能能力中。因此,证明RASEC可以有效地表明喉部区域中的切割区域,大大降低了能量损失。
translated by 谷歌翻译
Increasing research interests focus on sequential recommender systems, aiming to model dynamic sequence representation precisely. However, the most commonly used loss function in state-of-the-art sequential recommendation models has essential limitations. To name a few, Bayesian Personalized Ranking (BPR) loss suffers the vanishing gradient problem from numerous negative sampling and predictionbiases; Binary Cross-Entropy (BCE) loss subjects to negative sampling numbers, thereby it is likely to ignore valuable negative examples and reduce the training efficiency; Cross-Entropy (CE) loss only focuses on the last timestamp of the training sequence, which causes low utilization of sequence information and results in inferior user sequence representation. To avoid these limitations, in this paper, we propose to calculate Cumulative Cross-Entropy (CCE) loss over the sequence. CCE is simple and direct, which enjoys the virtues of painless deployment, no negative sampling, and effective and efficient training. We conduct extensive experiments on five benchmark datasets to demonstrate the effectiveness and efficiency of CCE. The results show that employing CCE loss on three state-of-the-art models GRU4Rec, SASRec, and S3-Rec can reach 125.63%, 69.90%, and 33.24% average improvement of full ranking NDCG@5, respectively. Using CCE, the performance curve of the models on the test data increases rapidly with the wall clock time, and is superior to that of other loss functions in almost the whole process of model training.
translated by 谷歌翻译
Optical coherence tomography (OCT) captures cross-sectional data and is used for the screening, monitoring, and treatment planning of retinal diseases. Technological developments to increase the speed of acquisition often results in systems with a narrower spectral bandwidth, and hence a lower axial resolution. Traditionally, image-processing-based techniques have been utilized to reconstruct subsampled OCT data and more recently, deep-learning-based methods have been explored. In this study, we simulate reduced axial scan (A-scan) resolution by Gaussian windowing in the spectral domain and investigate the use of a learning-based approach for image feature reconstruction. In anticipation of the reduced resolution that accompanies wide-field OCT systems, we build upon super-resolution techniques to explore methods to better aid clinicians in their decision-making to improve patient outcomes, by reconstructing lost features using a pixel-to-pixel approach with an altered super-resolution generative adversarial network (SRGAN) architecture.
translated by 谷歌翻译
In the scenario of black-box adversarial attack, the target model's parameters are unknown, and the attacker aims to find a successful adversarial perturbation based on query feedback under a query budget. Due to the limited feedback information, existing query-based black-box attack methods often require many queries for attacking each benign example. To reduce query cost, we propose to utilize the feedback information across historical attacks, dubbed example-level adversarial transferability. Specifically, by treating the attack on each benign example as one task, we develop a meta-learning framework by training a meta-generator to produce perturbations conditioned on benign examples. When attacking a new benign example, the meta generator can be quickly fine-tuned based on the feedback information of the new task as well as a few historical attacks to produce effective perturbations. Moreover, since the meta-train procedure consumes many queries to learn a generalizable generator, we utilize model-level adversarial transferability to train the meta-generator on a white-box surrogate model, then transfer it to help the attack against the target model. The proposed framework with the two types of adversarial transferability can be naturally combined with any off-the-shelf query-based attack methods to boost their performance, which is verified by extensive experiments.
translated by 谷歌翻译
Supervised Deep-Learning (DL)-based reconstruction algorithms have shown state-of-the-art results for highly-undersampled dynamic Magnetic Resonance Imaging (MRI) reconstruction. However, the requirement of excessive high-quality ground-truth data hinders their applications due to the generalization problem. Recently, Implicit Neural Representation (INR) has appeared as a powerful DL-based tool for solving the inverse problem by characterizing the attributes of a signal as a continuous function of corresponding coordinates in an unsupervised manner. In this work, we proposed an INR-based method to improve dynamic MRI reconstruction from highly undersampled k-space data, which only takes spatiotemporal coordinates as inputs. Specifically, the proposed INR represents the dynamic MRI images as an implicit function and encodes them into neural networks. The weights of the network are learned from sparsely-acquired (k, t)-space data itself only, without external training datasets or prior images. Benefiting from the strong implicit continuity regularization of INR together with explicit regularization for low-rankness and sparsity, our proposed method outperforms the compared scan-specific methods at various acceleration factors. E.g., experiments on retrospective cardiac cine datasets show an improvement of 5.5 ~ 7.1 dB in PSNR for extremely high accelerations (up to 41.6-fold). The high-quality and inner continuity of the images provided by INR has great potential to further improve the spatiotemporal resolution of dynamic MRI, without the need of any training data.
translated by 谷歌翻译
Recent studies have shown that using an external Language Model (LM) benefits the end-to-end Automatic Speech Recognition (ASR). However, predicting tokens that appear less frequently in the training set is still quite challenging. The long-tail prediction problems have been widely studied in many applications, but only been addressed by a few studies for ASR and LMs. In this paper, we propose a new memory augmented lookup dictionary based Transformer architecture for LM. The newly introduced lookup dictionary incorporates rich contextual information in training set, which is vital to correctly predict long-tail tokens. With intensive experiments on Chinese and English data sets, our proposed method is proved to outperform the baseline Transformer LM by a great margin on both word/character error rate and tail tokens error rate. This is achieved without impact on the decoding efficiency. Overall, we demonstrate the effectiveness of our proposed method in boosting the ASR decoding performance, especially for long-tail tokens.
translated by 谷歌翻译
The objective of this paper is to learn dense 3D shape correspondence for topology-varying generic objects in an unsupervised manner. Conventional implicit functions estimate the occupancy of a 3D point given a shape latent code. Instead, our novel implicit function produces a probabilistic embedding to represent each 3D point in a part embedding space. Assuming the corresponding points are similar in the embedding space, we implement dense correspondence through an inverse function mapping from the part embedding vector to a corresponded 3D point. Both functions are jointly learned with several effective and uncertainty-aware loss functions to realize our assumption, together with the encoder generating the shape latent code. During inference, if a user selects an arbitrary point on the source shape, our algorithm can automatically generate a confidence score indicating whether there is a correspondence on the target shape, as well as the corresponding semantic point if there is one. Such a mechanism inherently benefits man-made objects with different part constitutions. The effectiveness of our approach is demonstrated through unsupervised 3D semantic correspondence and shape segmentation.
translated by 谷歌翻译
Patients take care of what their teeth will be like after the orthodontics. Orthodontists usually describe the expectation movement based on the original smile images, which is unconvincing. The growth of deep-learning generative models change this situation. It can visualize the outcome of orthodontic treatment and help patients foresee their future teeth and facial appearance. While previous studies mainly focus on 2D or 3D virtual treatment outcome (VTO) at a profile level, the problem of simulating treatment outcome at a frontal facial image is poorly explored. In this paper, we build an efficient and accurate system for simulating virtual teeth alignment effects in a frontal facial image. Our system takes a frontal face image of a patient with visible malpositioned teeth and the patient's 3D scanned teeth model as input, and progressively generates the visual results of the patient's teeth given the specific orthodontics planning steps from the doctor (i.e., the specification of translations and rotations of individual tooth). We design a multi-modal encoder-decoder based generative model to synthesize identity-preserving frontal facial images with aligned teeth. In addition, the original image color information is used to optimize the orthodontic outcomes, making the results more natural. We conduct extensive qualitative and clinical experiments and also a pilot study to validate our method.
translated by 谷歌翻译